<table>
<thead>
<tr>
<th>Track I</th>
<th>Track II</th>
<th>Track III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Session: The Global Outlook on Nickel</td>
<td>Session 1: Surface Finishing Research</td>
<td>Session 2: Surface Preparation</td>
</tr>
<tr>
<td>Chair: Christian Richter</td>
<td>Chair: Eric Brooman</td>
<td>Chair: William Nebiolo</td>
</tr>
<tr>
<td>Dr. Eric Brooman, Winner Scientific Achievement Award, Blum Lecture: Nickel in Surface Finishing: A Glorious Past – An Uncertain Future</td>
<td>No Presentation</td>
<td>No Presentation</td>
</tr>
<tr>
<td>Dr. Hudson Bates, Recent Scientific and Technical Developments on Nickel, Nickel Institute</td>
<td>Removal of Hexavalent Chromium by Emulsion Liquid-Phase Separation, Membrane Technique, Xavier Albert Ventura, Laboratory of Electrochemical Research & Development</td>
<td>Cleaning Processes for High-Quality Plating, Barbara Kangensberg, BFK Solutions, LLC</td>
</tr>
<tr>
<td>Moderator: Christian Richter</td>
<td>Removed of Iron and Other Metal Impurities from Chromium Plating Solutions, Dr. Sergey S. Kruglikov, Nadya Kolotovkina & Tatjana Ladygina, S.S. Kruglikov Consultants</td>
<td>A Method for Quantitative Determination of the Cleaning Power & Capacity of the Aqueous Cleaning Solutions, Dr. M. Arroyo, Technical University of Sofia, Bulgaria</td>
</tr>
<tr>
<td>Panel: Warren Smith, Vale Inco (Canada), Francisco Martins, Votorantim Metals (Brazil) , Surface Finishing Industry Representative (Japan), and Patrick Benenab (France)</td>
<td>Technical Paper</td>
<td>Technical Paper</td>
</tr>
<tr>
<td>Electrochemical Regeneration of Cupric Chloride Etching Solutions, Dr. Sergey Kruglikov, Dmitry Turaev & Ann Busikova, S.S. Kruglikov Consultants</td>
<td>Replaced of a Perchloroethylene Degreaser, Allison Marsh, Concurrent Technologies, Mary Cera, Oklahoma Air Logistics Center & Aurelio Irizarry, Air Force Research Laboratory</td>
<td>Technical Paper</td>
</tr>
<tr>
<td>Technical Paper</td>
<td>Surface Cleaning with Laser Technology, George Heidelmann, Adapt Laser Systems</td>
<td>Technical Paper</td>
</tr>
<tr>
<td>Replacement of a Perchloroethylene Degreaser, Allison Marsh, Concurrent Technologies, Mary Cera, Oklahoma Air Logistics Center & Aurelio Irizarry, Air Force Research Laboratory</td>
<td>Technical Paper</td>
<td>Technical Paper</td>
</tr>
</tbody>
</table>

Technical Conference Reception

<table>
<thead>
<tr>
<th>Session 3: Surviving 2009 Economic Outlook & Advice</th>
<th>Session 4: Light Metals Finishing</th>
<th>Session 5: Decorative Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair: Michael Siegmund</td>
<td>Chair: James Lindsay</td>
<td>Chair: Mike Barnstead</td>
</tr>
</tbody>
</table>
Keynote: Dr. Ken Mayland, ClearView Economics, LLC, *What will be the Signs of the Coming Recovery*

- **Electronic Chemicals**
 - Technical Paper

- **Selective Plating on Titanium Alloys**
 - Technical Paper

- **Zincate Free Plating of Beryllium, Magnesium, Aluminum and Their Alloys**, Dr. John W. Bibler, Sanchem, Inc.
 - Technical Paper

- **Sputter Seeded Activation for Electroless Nickel Plating on Composite Alloys**, Dr. Leonard Nanis, LN3 Electrochemical Engineering
 - Technical Paper

 - Technical Paper

- **New Energy Saving Electropolish/Anodize Process Produces “Type 23” Heavy Thickness and Salvage Hard Anodize for Discrepant/Worn Part Repair**, Fred C. Schaedel, Alpha Process Systems
 - Technical Paper

- **Outlook on OSHA Priorities for 2009**, U.S. Department of Labor Representative

- **Managing Compliance in Tough Economic Times**, Joelie Zak, Scientific Control Laboratories, Inc.

Panel Discussion: How will you survive 2009 to the Recovery

Moderator: Michael Siegmund

Panelists: Dan Brockman, Tech Metals, John Lindstedt, Artistic Plating, Jim Jones, Dixie Industrial Plating

- **Comparison of Micro Arc Oxidation and Friction Stir Processed Coatings on Aluminum Alloy, Sudhir Baral, Anand Pali, Raghu Raj Rangaraju, Prasad Kalala, Raja K.S. & Misra M., University of Nevada, Reno**
 - Technical Paper

- **Maximizing Decorative Electroplating Productivity by Optimizing the Rack Design for a Family of Ten Different Door Handles**, Bart van Den Bossche, Alan Rose, Jim Sweeney & Jerry Phillips, Elysca
 - Technical Paper

- **Why do trivalent chromates work in one shop and not in another shop? Do trivalent chromates turn to hexavalent while they are in the field?**
 - Panel Discussion: Behavior Trivalent Passivates in Accelerated Corrosion Tests
 - Moderator: Eric Olander
 - Panelists: George Brutchen, Delphi (retired), Frank Altmayer, Scientific Control Labs Inc, Skip Griffin, MacDermid, James Jones, Dixie Industrial Plating, Doris Hill, GM & USCAR, Bing Xu, Ford & USCAR (invited)

Session 6: Surviving 2009 - Regulatory Outlook & Advice

Chair: Jeff Hannapel

 - Technical Paper

- **Fundamentals of Global EHS Regulations and How They Impact the Surface Finishing Industry**, Darrin L. Lacheta, Tosoh SMD, Inc.
 - Technical Paper

- **REACH: Emerging Compliance Challenges**, Martha Marrapese, Keller & Hackman
 - Technical Paper

- **Outlook on OSHA Priorities for 2009**, U.S. Department of Labor Representative

- **Managing Compliance in Tough Economic Times**, Joelie Zak, Scientific Control Laboratories, Inc.

Session 7: Trivalent Passivates: Are they Hexavalent Cr Free?

Chair: Eric Olander

- **Behavior of Trivalent Passivates in Accelerated Corrosion Tests, Tom Rochester, Plating Systems and Technologies, Inc**
 - Technical Paper

- **Comparison of Electroless Nickel & Functional Chromium Coatings**
 - Technical Paper

- **Comparison of Electroless Nickel & Functional Chromium Coatings**, George E. Shahin, CEF, Atotech USA
 - Technical Paper

- **A Stable Nanocrystalline Alloy Functional Coating**, Allen R. Jones, Joe Hamann, Christopher A. Schuh & Alan C. Lund, Xtallic Corporation
 - Technical Paper

 - Technical Paper

Session 8: Functional Plating

Chair: Jennings Taylor

 - Technical Paper

- **Advancement in PTFE Dispersions for Electroless Nickel Co-deposition**, Nicole Micyus, MacDermid, Inc.
 - Technical Paper

- **Comparison of Electroless Nickel & Functional Chromium**, George E. Shahin, CEF, Atotech USA
 - Technical Paper

- **Why do trivalent chromates work in one shop and not in another shop? Do trivalent chromates turn to hexavalent while they are in the field?**
 - Panel Discussion: Behavior Trivalent Passivates in Accelerated Corrosion Tests
 - Moderator: Eric Olander
 - Panelists: George Brutchen, Delphi (retired), Frank Altmayer, Scientific Control Labs Inc, Skip Griffin, MacDermid, James Jones, Dixie Industrial Plating, Doris Hill, GM & USCAR, Bing Xu, Ford & USCAR (invited)

- **Presentations**
 - **Trivalent Chromium Issues**
 - **Hexavalent Chrome in Trivalent Passivates?**
 - Technical Paper
<table>
<thead>
<tr>
<th>Session 9: Green Surface Finishing</th>
<th>Session 10: Surface Finishing Research</th>
<th>Session 11: Precious and Specialty Metal Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair: Peter Gallerani</td>
<td>Chair: Melissa Klingenberger</td>
<td>Chair: William Sepp</td>
</tr>
<tr>
<td>Activity Based Energy Usage & Cost for Surface Finishing Facilities, Peter Gallerani, Integrated Technologies, Inc.</td>
<td>Comparison of Biological Toxicity of Several Plating Products by Mammalian Cells, Dr. Akiko Ogawa, Dr. Naoaki Okuda & Dr. Hideyuki Kanematsu, Suzuka National College of Technology</td>
<td>Technical Paper</td>
</tr>
<tr>
<td>Case Study: Reducing Water Usage and Wastewater Treatment Costs in an Electroplating Operation, Joelle Zek, Scientific Control Laboratories, Inc.</td>
<td>Change of Residual Stress with Alloy Film Formation by HSSL Process, Dr. Hideyuki Kanematsu, Kaori Shirakihara & Dr. Daisuke Kuroda, Suzuka National College of Technology</td>
<td>Technical Paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair: Keith Legg</td>
<td>Chair: Steve Burling</td>
<td>Chair: Rick Delawder</td>
</tr>
<tr>
<td>The Emerging Future of Surface</td>
<td>Surface Finishing of Concrete Structures by a Silane Series Solvent, Dr. Hideyuki Kanematsu, Suzuka National College of Technology, Dr. Jean-Jacques Duprat, Coventya</td>
<td>Dedicated Processes for Electroplating on Fasteners, Paul Brezovec, Concurrent Technologies Corp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology, Dr. Keith Legg, Rowan Technology</td>
<td>Kazumi Murakami, Mie Prefecture Industrial Research Institute & Dr. Kazuhiro Nakata, Osaka University</td>
<td>Technical Paper</td>
</tr>
<tr>
<td>Chromate Replacements in Naval Aircraft, Bill Nickerson, US Navy</td>
<td>Environmentally Friendly Anticorrosive Primer for Coil Coating Applications Based on Oxy-Amino-Phosphate of Magnesia, Arieh Calahorra & Saher Khatib, Pigmentan Ltd.</td>
<td>Acid Zinc Nickel: A New Chapter in Zinc Nickel Plating, Irene Kubitza, Atotech Deutschland GmbH</td>
</tr>
<tr>
<td>Corrosion Prevention and Surface Technology Challenges for the Navy and Other DoD Coating Problems, Don Heileman, National Surface Technology Center</td>
<td>Corrosion Resistance Mechanism of Chromium Free Zinc-Rich Paint Film on Scratched Areas, Yasuhau Takayama, Yuken Industry Co., Ltd.</td>
<td>A Reality for Nano-Technology - High Performance Metal Surface Finishing by Nano-Ceramic Coating, Dr. Jay C-J Chu & Dr. Peter-Klaus Kos, Nanomate Technology</td>
</tr>
<tr>
<td>OEM Drivers and Replacement Options for Aircraft, Steve Gaydos, Boeing</td>
<td>How to Increase First Time Quality by Reducing Paint Defects, Kevin Lockwood, Paint Performance Consulting</td>
<td>Effect of Surface Processing Variables on Hydrogen Embrittlement of Steel Fasteners Part 2: Electroplating and non Electolytic Processes, S. Brahimi, IBECA Technologies Corp. & S. Yue, McGill University</td>
</tr>
<tr>
<td>Effect of Surface Processing Variables on Hydrogen Embrittlement of Steel Fasteners Part 2: Electroplating and Non-electrolytic Processes, S. Brahimi, IBECA Technologies Corp. & S. Yue, McGill University</td>
<td>Nano Particle Based Trivalent Passivates, Skip Griffin, MacDermid, Inc.</td>
<td>Technical Paper</td>
</tr>
<tr>
<td>OEM Drivers and Replacement Options for Aircraft, Steve Gaydos, Boeing</td>
<td>How to Increase First Time Quality by Reducing Paint Defects, Kevin Lockwood, Paint Performance Consulting</td>
<td>Effect of Surface Processing Variables on Hydrogen Embrittlement of Steel Fasteners Part 2: Electroplating and non Electolytic Processes, S. Brahimi, IBECA Technologies Corp. & S. Yue, McGill University</td>
</tr>
<tr>
<td>Effect of Surface Processing Variables on Hydrogen Embrittlement of Steel Fasteners Part 2: Electroplating and Non-electrolytic Processes, S. Brahimi, IBECA Technologies Corp. & S. Yue, McGill University</td>
<td>Nano Particle Based Trivalent Passivates, Skip Griffin, MacDermid, Inc.</td>
<td>Technical Paper</td>
</tr>
</tbody>
</table>
Surface Finishing of Concrete Structures
by a Silane Series Solvent

Hideyuki Kanematsu*1, Kazumi Murakami*2, Kazuhiro Nakata*3

*1: Suzuka National College of Technology
*2: Mie Prefecture Industrial Research Institute
*3: Osaka University

In many parts of the sewage line, concrete structures have been used. In those environments, hydrogen sulfide gases are very easy to be evolved. The gases are often changed to sulfuric acid, being aided by biofilms’ action on the concrete. The sulfuric acid penetrates into the concrete structures and deteriorates them gradually due to the decrease of pH. Conventionally, the epoxy resin was used to protect the penetration of sulfuric acid. However, the thickness of the epoxy coating requires several millimeters. Therefore, we developed a silane compounds which could protect the penetration with the thickness of 300 micrometers. The performance and problems were testified and discussed in this study.

For more information contact:
Professor Hideyuki Kanematsu, Ph.D, FIMF
Dept. MS & E
Suzuka National College of Technology
Shiroko-cho, Suzuka, Mie 510-0294
Japan
Email: kanemats@mse.suzuka-et.ac.jp
Web: http://www1.mint.or.jp/~reihidek/
1. INTRODUCTION

In Japan, sewage lines have been developed very rapidly and maintained since 1970s. Nowadays, the number of miles is about 221,000 (355,000 km). When one pays attention to the concrete rebar pipes, it reaches about 40,000 miles (64,000 km)\(^{(1)}\). The corrosion and the following deterioration phenomena for sewage line concretes were already observed at sewerage pipes in Los angeles, USA, 1900. And also in Japan, laboratory and fields tests about the technical problem have been carried out so far. In 1987, “Guideline & Manuals for Protective Concrete Coating of Sewage Line” about the problem was established by Japan Sewage Works Agency\(^{(2)-(4)}\). Nowadays, most of Japanese engineers in this field very often refer to this guideline.

The corrosion and deterioration of concrete in sewage lines are originally induced by sulfate reducers and sulfur oxidizing bacteria reacting with hydrosulfate flowing into waste water. The reaction changes hydrosulfate into sulfuric acid via hydrogen sulfide and the sulfuric acid decreases the pH of concrete which leads to the structure collapse finally, since the concrete loses alkalescency. Therefore, the guideline also mentioned above describes the coating-type resin lining technique in detail as one of effective corrosion protection methods, since the coating could protect the penetration of sulfuric acid. However, the technique requires the multiple repetition of coating which increases the thickness as a result and leads to high cost, particularly when the concrete structure would be used in high concentration of hydrogen sulfide.

In this paper, we investigated a silane compound for the application to sewage concrete structures, since it might shorten the term of works by saving the repetition number and cut the cost by decreasing the thickness of coating.

2. CORROSION OF CONCRETE IN SEWAGE LINES AND ITS COUNTERMEASURE

Generally speaking, the corrosion of concrete in sewage line occurs through
the following steps:
#1: The sulfate ion which comes from cleaning substances for domestic use, aluminum sulfate in filtration plants etc. mixes into sewage water.
#2: The biological reactions between sulfate ion and anaerobic sulfate reducing bacteria occur and hydrogen sulfide (H₂S) forms.
#3: Hydrogen sulfide gas diffuses into air through turbulence of sewage water or polluted mad.
#4: Hydrogen sulfide gas is absorbed into water condensed on side walls or ceilings made of concrete in sewage system.
#5: In the condensed water, sulfuric acid forms through the reaction between hydrogen sulfide and aerobic sulfur oxidizing bacteria.
#6: The formed sulfuric acid reacts with calcium hydroxide (Ca(OH)₂), ettringite (3CaO·Al₂O₃·3CaSO₄·32H₂O) etc. from concrete to form gypsum (CaSO₄·2H₂O), which deteriorate concrete structures finally.

The following countermeasures against the corrosion phenomena mentioned above are now investigated.
#1: Mitigation of occurrence: Inhibition of sulfate ion into sewage water, restraint of anaerobic environment etc.
#2: Inhibition of corrosion: inhibition of hydrogen sulfide diffusion, dilution of hydrogen sulfide in gas phase etc.
#3: Corrosion protection: Application of anti-sulfuric acid materials, the increase of anti-sulfuric acid property of concrete, coating of concrete surfaces.

As maintenance and anti-corrosion technique for new concrete, coating-type techniques have been often used. The guideline for anti-corrosion by Japan Sewage Works Agency(3) defines four ranks as A, B, C, D₁ according to the performances. And D₁ is used for the severest environment among them. The properties required for D₁ are shown in the following table (Table 1).

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Test Method</th>
<th>Specification for D₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>JIS K5600-1-1:1999</td>
<td>No wrinkles, irregularity,</td>
</tr>
<tr>
<td>Property</td>
<td>Standard/Method</td>
<td>Requirement</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Adhesiveness</td>
<td>JIS A6909</td>
<td>>1.5MPa at standard state <1.2MPa at water absorption state</td>
</tr>
<tr>
<td>Acid tolerance</td>
<td>JIS K5600-6-1</td>
<td>No bunch, cracking, softening, dissolution of coating after 60 days immersion in 10% sulfuric acid solution</td>
</tr>
<tr>
<td>Penetration depth of sulfuric acid</td>
<td>EPMA</td>
<td><5% penetration depth of the designed thickness And <100 μm, After 120 days immersion in 10% sulfuric acid solution</td>
</tr>
<tr>
<td>Alkali resistance</td>
<td>JIS K5600-6-1</td>
<td>No bunch, cracking, softening, dissolution of coating after 60 days immersion in calcium hydroxide saturation solution</td>
</tr>
<tr>
<td>Permeability</td>
<td>JIS A1404</td>
<td><0.15g of transmissibility coefficient</td>
</tr>
</tbody>
</table>

It should be noted that the penetration rate of sulfate ion into the coating layer is regulated. In fact, the guideline describes that the appropriate technique compatible with the specification should be multiple repeated coating processes which the thick coating layer would form as a result. In this experiment, we applied a silane compound to concretes for sewage lines and tried to reduce the
thickness of coating down to 300 micro meters and also to decrease the repetition numbers of coating down to two times, so that the thinner silane compound coating would satisfy the specification for D1 category shown in Table 1.

3. EXPERIMENTAL

3.1 Inorganic sealer

Conventionally, epoxy and polyurethane resins have been mainly diluted by a thinner and the resin component of them has been used for the purpose of sealing\(^5\). However, they could not seal the micro pores of thermal spray coating perfectly, since the solid contents were low. And as a result, they failed to increase the coating performances. Therefore, we used a quite different sealer based on silane compounds in the series of investigation to overcome the defects of conventional sealers. One of the authors has already investigated the sealer in the past\(^6\) to increase the corrosion resistance of thermal spray coating and it was already patented by D & D Corporation\(^7\). Now in Japan, it is often used for highway bridges, runaway lights and bridge of airports etc. and earns a good reputation. At the same time, it is still investigated on laboratory scales for some other applications\(^8\). The so called inorganic sealer is based on a silane compound and a curing catalyst is added to it. It absorbs moisture components in air to form a polymer through hydrolysis – condensation reactions\(^7\). In the series of experiments, we have applied this kind of silane compound sealer to the protection of deteriorated concrete in sewage lines.

In this investigation, four kinds of silane compounds were tested by changing the molecular weights of oligomers which was composed of methyl silane and phenyl silane to fix the composition of silane compound sealer. The samples were describes in Table 2.

Table 2 Molecular weight of silane compounds used in this experiment

<table>
<thead>
<tr>
<th>specimen number</th>
<th>average molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>360</td>
</tr>
<tr>
<td>2</td>
<td>760</td>
</tr>
</tbody>
</table>
As curing catalyst, two kinds of titanium complex (type A and B), a kind of aluminum complex, and zirconium complex were tested to evaluate the curing rate and protection capability against sulfuric acid penetration. In order to choose an appropriate filler, titanium oxide, talc, aluminum borate whisker, glass flake, burned kaolin, attapulgite and burned scallop shell were tested. According these evaluations, the composition of silane compound sealer was fixed to apply to the coating of concrete.

3.2 Evaluation tests

Evaluation tests for the silane compound were classified into four categories in this study. The first one was carried out to fix the molecular weight of silane compound applicable to the concrete. Various compounds were coated (200g/m²) to mortar plates (70mm x 70mm, the thickness: 20mm), hardened and kept at room temperature in 7 days. Then they were immersed into 10% sulfuric acid and the surface conditions were observed by naked eyes. And the protection capability against the penetration of sulfuric acid was also evaluated by the penetration rate of sulfate ion.

The second test was carried out to fix a curing catalyst appropriate for the coating. The four kinds of chemicals mentioned in 3.1 were added to a certain kind of silane oligomer. Then the curing rates and protection capability against sulfuric acid penetration were measured.

The third test was carried out to fix some kinds of fillers appropriate for the coating. The seven kinds of materials as filler candidate were already mentioned in the previous section. They were added to a certain silane compound and the protection capability was investigated in the same way with the first test.

From all of these three kinds of tests mentioned above, a certain composition of silane compound for concrete coating was fixed. Then it was applied to concrete coating and the characteristics were investigated how it could be complied with the specification of D1. (The fourth evaluation tests)
4. RESULTS AND DISCUSSION

4.1 Composition determination of silane compound

The silane compounds having various molecular weights shown in Table 2 were coated on mortar plates and the surface appearances were observed by naked eyes. For all specimens from No.1 to 4, titanium complex was used as curing catalyst. All specimens were damaged and peeled off due to the penetration of sulfate ion to some extent. However, the extent differs from specimen to specimen. For specimen No.1, 100% of the coating peeled off due to the penetration of sulfate ion. As for the specimen No.2, 90% of the coating peeled off. For both No.3 and 4, 5% of the coating peeled off.

![Fig. 1 Surface appearances for specimen No.2 and 3.](image)

Fig. 1 shows the observation results by naked eyes for specimen No.2 and 3. As explained in the previous report by Japan Sewage Works Agency\(^{(2)}\), penetrated sulfate ion reached the concrete surface through the coating layer and as a result, the concrete was deteriorated and heaved up. It suggests that the protection capability against sulfuric acid depended on the penetrate rate of sulfuric acid.

Fig 2 shows the correlation between the molecular weight of silane compound and the ratio of peeling area by the penetration of sulfuric acid. As shown in the figure, the protection capability increased with the molecular weight of silane compound.
On the other hand, the durability for all of these specimens was investigated by a complex cycle environmental test (the repetition of immersion in hot water at 80 degrees Celsius for two hours and drying at 80 degrees Celsius for four hours). The result indicates that the specimen No.4 showed the micro cracks in the coating layers at the very early stage of the tests. It suggests that the internal stress in the coating induced by the repetition of wetting and drying was accumulated and the coating layer was cracked when the internal stress exceeded over the tensile stress of coating layer. From all of these tests, we chose the specimen No.3 for the following tests.

4.2 Determination of curing catalyst

Using silane oligomer having the molecular weight of 1,500, we evaluated the protection capability against the penetration of sulfate ion for the five kinds of curing catalysts by the same method with that in the previous section. As for aluminum based filler and zirconium based one, the curing process required several days more than 3 days and we concluded that they were inappropriate from the viewpoint of practical application. As for the two kinds of titanium complex, the complete curing times were 24 hours. However, the protection capability against the penetration of sulfuric acid for type A was better than that
for type B and therefore, we chose titanium complex type A was chosen for the following test.

4.3 Determination of filler

Seven kinds of fillers were dispersed into the silane oligomer whose average molecular weight was 1,500, so that the weight ratio of filler to oligomer would be 0.25. And 2% titanium complex was added to the compound as curing catalyst. The specimen’s protection capability against the penetration of sulfate ion was evaluated by the same method mentioned above. The results were shown in Fig.3. They suggest that the positive effects for the protection capability of concrete were remarkable for titanium oxide, talc and aluminum borate whisker fillers. However, the cost of aluminum borate whisker is relatively high and we concluded that it would be inappropriate for the practical application. Therefore, we chose titanium oxide and talc as filler in the following investigation.

As for the two kinds of filler (titanium oxide and talc), the filler ratios were changed in the following investigation to increase the protection capability against the penetration of sulfuric acid. Concretely speaking, the weight percentage of
filler was increased to 40 % for both cases, and the same investigation was carried out. When only titanium oxide was added as filler, the protection capability decreased slightly. When the mix of titanium oxide and talc (the weight ratio 1:1) were used on the other hand, the protection capability showed the same very high value with those in Fig.3. Therefore, we chose the mix of two fillers for the following experiment.

4.4 Evaluation for the performance of the new concrete coating agent

From all of the investigations and discussion described from section 4.1 – 4.3, we decided the final composition of the new silane coating agent in the following table (Table 3).

<table>
<thead>
<tr>
<th>Silane oligomer</th>
<th>Titanium oxide</th>
<th>Talc</th>
<th>Curing catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 wt%</td>
<td>20 wt%</td>
<td>20 wt%</td>
<td>2 wt%</td>
</tr>
</tbody>
</table>

The coating agent shown in table 3 was coated to the concretes. The amount of coating was 600g/m² corresponding to the thickness of 300 micro meters. And their performances for inspection items described by 𝐃₁ specification (Table 1)
were investigated.

As for the appearance described JIS K5600-1-1:1999, no wrinkles, irregularity, peeling nor cracking of coating were observed. The adhesiveness test according to JIS A6909 indicates that it showed 3.1MPa at the standard state and 1.9MPa at water absorption state. Both values exceeded the standard value well. The peeling of coating was not observed, but the concrete itself was broken. The acid tolerance was achieved against sulfuric acid completely. When the coated concrete was immersed in 10% sulfuric acid for 60 days, the coating did not show any damages. As for the penetration depth of sulfuric acid corresponding to the protection capability against sulfuric acid penetration directly, the penetration of sulfur element in the coating layer was not observed after 120 days immersion. The result of EPMA analysis was shown in Fig.4. Fig.4-(1) shows the element analysis for silicon and the coating layer could be confirmed in the photo. However, sulfur level was almost zero in the corresponding area in Fig.4-(2) and it indicates that the coating layer did not contain sulfur and also that the penetration of sulfuric acid did not occur within 120 days after the beginning of immersion.

The concrete specimen was immersed into calcium hydroxide solution for 60 days to investigate alkali resistance. And any change was not observed after the immersion and it indicates that the alkali resistance satisfied D1 specification. Finally, the water permeability was 0.01 g for the new coating agent and the result also satisfied D1 specification.

5. CONCLUSIONS

We carried out a series of experiments to develop the concrete coating for the protection against the penetration of sulfuric acid. The developed chemical was silane based oligomer with fillers and a curing catalyst. Being compared with the conventional coatings, the new coating chemical realized the complete protection against the penetration of sulfuric acid with thinner coating layer (300 micro meters) as well as other performances such as appearance, adhesiveness, acid tolerance etc., which could complied with the severest standard by Japan Sewage Works Agency completely. It should be further investigated and
developed about many practical problems including coating techniques. However, the significance of the silane compound based coating will be focused more in the near future.

ACKNOWLEDGEMENT
We authors would like to make an address of many thank for D & D Corporation (7820-20 Sakura-cho, Yokkaichi-city, Mie, 512-1211, Japan) which gave us useful suggestion, materials and contribution.

REFERENCES
(2) Japan Sewage Works Agency: Report on anti-corrosion techniques and evaluation for them, 2001 (Japanese)
(3) Japan Sewage Works Agency: Guideline & Manuals for Protective Concrete Coating of Sewage Line, 2002 (Japanese)
(4) Uno, Y, Deterioration of Concrete for sewage lines and Its Countermeasure, Rust Convention & Control, Japan, 2007. 51: p524-534. (Japanese)
(7) D & D Corporation, Sealers, Japan Patent Office (JPO) No.3816354
Surface Finishing of Concrete Structures by a Silane Series Solvent

Hideyuki Kanematsu*1, Kazumi Murakami*2, Kazuhiro Nakata*3

*1: Suzuka National College of Technology
*2: Mie Prefecture Industrial Research Institute
*3: Osaka University
Contents

• Background of this study
• Purpose of this study
• Experimental
• Results and Discussion
• Conclusions
• Acknowledgement
Japanese Sewage Line

- the total number of miles: 221,000 (355,000 km)
- concrete rebar pipes: 40,000 (64,000 km)

Corrosion and deterioration of concrete

Guideline & Manuals for Protective Concrete Coating of Sewage Line
Deterioration of Sewage Line Concrete

Concrete structures

SO₄²⁻

Sulfate-reducing bacteria

Sulfur-oxidizing bacteria

H₂SO₄

H₂S

Sewage Line

H₂SO₄ is produced by the reaction of sulfur-oxidizing bacteria with oxygen, while H₂S is produced by sulfate-reducing bacteria. SO₄²⁻ ions enter the system from outside, likely through the soil or surrounding environment. These processes lead to the degradation of concrete structures in sewage lines.
Conventional Countermeasures

coating-type resin lining technique

Coating layers are generally thick.

multiple repetition of coating

High cost
The silane compound penetrates porous surfaces such as spray coated film & concrete structures very easily.

The silane compound is hardened by the reaction of moisture component in air. It coated the substrate perfectly.
Specification for D1 category (1)

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Test Method</th>
<th>Specification for D₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>JIS K5600-1-1:1999</td>
<td>No wrinkles, irregularity, peeling, cracking of coating</td>
</tr>
<tr>
<td>Adhesiveness</td>
<td>JIS A6909</td>
<td>>1.5MPa at standard state
 >1.2MPa at water absorption state</td>
</tr>
<tr>
<td>Acid tolerance</td>
<td>JIS K5600-6-1</td>
<td>No bunch, cracking, softening, dissolution of coating after 60 days immersion in 10% sulfuric acid solution</td>
</tr>
</tbody>
</table>
Specification for D1 category (1)

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Test Method</th>
<th>Specification for D$_1$</th>
</tr>
</thead>
</table>
| Penetration depth of sulfuric acid | EPMA | <5% penetration depth of the designed thickness
And <100 μm,
After 120 days immersion in 10% sulfuric acid solution |
| Alkali resistance | JIS K5600-6-1 | No bunch, cracking, softening, dissolution of coating after 60 days immersion in calcium hydroxide saturation solution |
Specification for D1 category (1)

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Test Method</th>
<th>Specification for D₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability</td>
<td>JIS A1404</td>
<td><0.15g of transmissibility coefficient</td>
</tr>
</tbody>
</table>
Purpose of this study

Concrete structures for sewage lines.

Does the very thin silane compound satisfy D1 specification?

Can the very thin silane compound block sulfuric acid?
Experimental 1

- Silane compound
 - Determination of molecular weight
 - Selection of curing catalyst
 - Selection of appropriate filler
 - Evaluation
Experimental - Evaluation

- Appearance
- Alkali resistance
- Sulfuric acid penetration
- Adhesiveness
- Acid tolerance

D1 specification
Composition determination of silane compound

Specimen Number 2 Specimen Number 3

The deterioration of concrete heaved up the coating layer.
The resistance of silane compound against sulfuric acid increased with molecular weight.

Fig. 2 Correlation between ratio of peeling area and molecular weight of silane compound.
Fig. 3 Change of protection capability against the penetration of sulfuric ion by the difference of fillers

Materials

* #1: titanium oxide
* #2: talc
* #3: aluminum borate whisker
* #4: glass flake
* #5: burned kaolin
* #6: attapulgite
* #7: burned scallop shell

the ratio of peeling area (%)
Chemical composition of silane compound decided by this investigation

<table>
<thead>
<tr>
<th></th>
<th>Silane oligomer</th>
<th>Titanium oxide</th>
<th>Talc</th>
<th>Curing catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt%</td>
<td>60 pts.</td>
<td>20 pts.</td>
<td>20 pts.</td>
<td>2 pts.</td>
</tr>
<tr>
<td></td>
<td>wt%</td>
<td>wt%</td>
<td>wt%</td>
<td>wt%</td>
</tr>
</tbody>
</table>
All specification items for D₁ were cleared!

D₁ specification

- Appearance
- Adhesiveness
- Alkali resistance
- Sulfuric acid penetration
- Acid tolerance
EPMA results for the concrete specimen coated by the silane compound

the coating layer
Conclusions

We carried out a series of experiments to develop the concrete coating for the protection against the penetration of sulfuric acid.

The developed chemical was silane based oligomer with fillers and curing catalyst.
Conclusions 2

Being compared with the conventional coatings, the new coating chemical realized the complete protection against the penetration of sulfuric acid with thinner coating layer (300 micro meters) as well as other performances such as appearance, adhesiveness, acid tolerance etc., which could complied with the severest standard by Japan Sewage Works Agency completely.
Conclusions 3

It should be further investigated and developed about many practical problems including coating techniques. However, the silane compound based coating will increase more significant in the near future.
Acknowledgement

We authors would like to make an address of many thank for D & D Corporation (7820-20 Sakura-cho, Yokkaichi-city, Mie, 512-1211, Japan) which gave us useful suggestion, materials and contribution.